
The VMware Mobile Virtualization Platform: is that a
hypervisor in your pocket?

Ken Barr Prashanth Bungale Stephen Deasy Viktor Gyuris Perry Hung
Craig Newell Harvey Tuch Bruno Zoppis

{kbarr, prash, sdeasy, gyuris, perry, craign, htuch, bzoppis}@vmware.com
VMware, Inc.

ABSTRACT
The virtualization of mobile devices such as smartphones,
tablets, netbooks, and MIDs offers significant potential in
addressing the mobile manageability, security, cost, compli-
ance, application development and deployment challenges
that exist in the enterprise today. Advances in mobile pro-
cessor performance, memory and storage capacities have led
to the availability of many of the virtualization techniques
that have previously been applied in the desktop and server
domains. Leveraging these opportunities, VMware’s Mobile
Virtualization Platform (MVP) makes use of system virtu-
alization to deliver an end-to-end solution for facilitating
employee-owned mobile phones in the enterprise. In this
paper we describe the use case behind MVP, and provide
an overview of the hypervisor’s design and implementation.
We present a novel system architecture for mobile virtual-
ization and describe key aspects of both core and platform
virtualization on mobile devices.

1. INTRODUCTION
Over the past decade the mobile phone has evolved from
a voice-centric device to a mobile personal computer. We
can observe multiple progressive generations in the enter-
prise adoption of such devices. There has been a shift from
pure voice support to email and web browsing, with current
trends towards the mimicking of desktop functionality. On
the horizon we expect mobile devices to become true first-
class enterprise endpoints with rich applications and core
enterprise connectivity.

As mobile computing advances, it brings some familiar chal-
lenges to enterprises; application management and inter-
operability, security and manageability, consumerization of
IT and persona management. Independent research firm,
Forrester Research, Inc. found in 2008 that firms expected
a 3× increase in enterprise employee smartphone users by
2013 [16]. This will lead to an acceleration of the rate at
which these challenges become IT concerns. In addition, the
diversity of usage and maturation of enterprise applications
on mobile platforms will limit the scalability of previous ad
hoc solutions, for example pushing services like email outside
of enterprise firewalls.

From an end-user perspective there is a healthy desire to con-
solidate personal physical device ownership and the dilemma
of carrying a smartphone for work is no different. Rather
than carrying two devices, allowing enterprise IT stewardship
of a personal device or even sacrificing the personal device for

Figure 1: Memory capacity, internal storage and
clock frequency for a sample of smartphones [25].

some enterprise-provided device, we feel that virtualization
offers an opportunity to provide the best solution by pre-
serving isolation of environments without requiring a second
physical device.

Co-existing virtual phones on a device represents a very
attractive alternative to existing solutions for these problems.
The rapid pace of hardware advances in mobile devices over
the past several years, as shown in Figure 1, has led to a
class of devices with resources capable of supporting multiple
virtual phones where the virtualization overhead is small.

The VMware Mobile Virtualization Platform (MVP) is an
end-to-end solution for enterprise management of employee
owned phones, encompassing a hypervisor for ARM-based
devices, an enterprise virtual phone and remote device man-
agement. In this paper we focus on the hypervisor layer and
provide the following contributions:

• A system architecture for a Type 2 mobile hypervisor,
a novel design point for a mobile hypervisor with signif-
icant device compatibility and deployment advantages.

• A lightweight paravirtualization technique for ARMv7
cores aimed at minimizing the total system complexity.

124

• Device and platform virtualization approaches for stor-
age, networking and telephony, the key devices in en-
abling the performance, reliability and security of the
MVP solution.

• An application of the MVP hypervisor to the virtualiza-
tion of the Android [18] operating system. Android is
the fastest growing mobile operating system today [17]
and will be used as a running example for both guest
and host.

The following section provides some discussion on the design
goals that fall out of the above motivating use case. The
MVP system architecture and details on the virtualization
approaches adopted for the core and devices are given in
Section 3, the user interface of a virtualized Android-based
system is described in Section 4 and we conclude with related
work and MVP’s status. We limit the scope of discussion
to smartphones but note that the emerging class of ARM-
based tablet and netbook devices share with smartphones
many hardware and software characteristics and could be
substituted in the rest of the paper.

2. DESIGN GOALS
The MVP hypervisor enables an enterprise provisioned and
managed virtual phone to execute on a personal phone owned
by an employee of the organization, a Bring Your Own Device
(BYOD) model. It provides a second completely encapsulated
smartphone stack by virtualizing the system at the hardware
level and providing a virtual machine (VM) platform for the
enterprise stack to execute on. We describe below the design
goals that informed the hypervisor’s technical architecture:

• Portability. Since the employee’s personal phone is
the physical platform, it is important to have the MVP
hypervisor able to run on a wide variety of possible
mobile devices.

Figure 2 provides a block level diagram of an example
smartphone. It is a simplified view, since some of the
components such as the GSM stack may have addi-
tional processor cores and memory devices, but even
at this level of detail it’s evident that a smartphone
platform consists of a significant number of diverse
components. Unlike the desktop and server domains,
most components are integrated on a phone’s System-
on-Chip (SoC). A SoC is made up of a number of IP
blocks, including the processor core. For each version of
the standardized ARM architecture there are a number
of cores available from ARM and architectural licensees,
each with implementation defined behaviors within that
allowed by the architecture specification. Beyond the
core there is a plethora of device components, each
with its own set of interfaces and programming model.

To maximize the number of devices a mobile hypervisor
executes on it should avoid undue dependency on the
many and varied specifics of a phone’s hardware. This
implies a rethink of mobile hypervisor system structure
which we describe in Section 3.

• Compatibility. An effective solution to enterprise ap-
plication development and management requirements

Smartphone internals

System-on-Chip (SoC)

ARM core
(e.g. Cortex A-8)

MMU

Interrupt
controller

Timers

Cache

GPU

DMA engine

DSP

LCD
controller

USB
controller

SD card
controller

UART

GPIO

Camera
controller

Power
management

Memory
controller

SDRAM NAND Flash

GSM modem GPS

Antenna

Accelerometer/compass

WiFi

LCD/touchscreen

Bluetooth

Battery

Camera

Microphone/speaker

Figure 2: Smartphone components.

needs to present a single virtual platform as a target
for enterprise applications. The role of the virtualiza-
tion layer is to map this abstraction to the underlying
phone hardware and system software where the VM is
deployed.

Most applications are written to specific mobile mid-
dleware and operating systems, for example Android,
iOS or Symbian. It is common for them to have depen-
dencies on specific versions of these environments. By
taking an existing set of components as the software
base of the virtual platform, such as the Android li-
braries, services and kernel, it’s possible to facilitate the
reuse of existing enterprise applications in the virtual
phone environment. In addition this allows the enter-
prise to tap into the existing ecosystem and developer
base surrounding the platform. The hypervisor is con-
cerned with providing a virtual hardware abstraction
capable of supporting efficiently the execution of this
complex and demanding virtual phone environment.

• Security. The most significant enterprise security con-
cerns introduced by mobility relate to physical threats,
for example phone theft or the removal of media con-
taining confidential documents. The ability to dictate
minimum password strengths, inactivity thresholds and
lockout, storage and network encryption and remote
wipe are necessary for a mobile platform to be consid-
ered secure [22].

In addition, there are traditional software security
threats that are common to desktop and mobile plat-
forms. One of the main attractions of a smartphone is

125

the ability of the user to download and install appli-
cations at will. Application store distribution models
popularized by Apple’s iPhone App Store [4] have led
to an enormous number of applications available on
these markets. We are now facing the same threats
from Trojans and spyware that we have seen on PCs.

In a BYOD model, phone owners should not be limited
in the applications that they can download, while cor-
porate IT needs the ability to protect corporate assets.
We reconcile these opposing views by having the MVP
hypervisor secure the execution and data in the enter-
prise virtual phone stack from the open environment
on the rest of the phone.

Section 3.4 details the MVP security architecture, ad-
dressing these physical and software threats with fea-
tures including an encrypted virtual filesystem and
virtual private network (VPN) tunneling of corporate
application network traffic.

• Low complexity. We strove to minimize the overall
system complexity, including both that of the hypervi-
sor and changes introduced in the guest to increase our
confidence in the fidelity of the virtualization. Lower
complexity leads to higher reliability, improved main-
tainability and greater security when trusted compo-
nents are also kept simple.

• Performance. The performance of an application
in the virtual phone should be indistinguishable by a
human user from the performance of that application
running on the native, unvirtualized device. In addition,
battery life should not be unreasonably affected by the
execution of the virtual phone. We wanted to go beyond
the limits of microbenchmarking and optimize for the
end user experience. Section 3.5 describes some of the
techniques we used to measure performance and to
target optimization efforts.

• Manageability. A key requirement for an enterprise
mobile solution is the ability for IT departments to
remotely manage devices, or in our case the virtual
phone. This requires supporting the provisioning, up-
dating, wiping, locking and backup of virtual phones
over mobile networks.

• OEM time-to-market (TTM). Ideally a mobile vir-
tualization solution should have minimal additional
engineering effort required by OEMs to support. In
the next section we describe an architecture capable of
achieving this by supporting the secure distribution of
most hypervisor components via standard application
channels. This differs from existing bare-metal hyper-
visor approaches in which the entire mobile hypervisor
is embedded on the device by the manufacturer prior
to shipping and supports a more flexible approach to
hypervisor distribution.

3. SYSTEM ARCHITECTURE

3.1 Overview
Figure 3 provides a block level overview of the MVP system
architecture. MVP is a Type 2, or hosted, hypervisor, provid-
ing the ability to execute additional guest virtual machines
alongside a smartphone’s existing host operating system.

ARMv7-A based SoC

Host Linux 2.6.29+ Kernel

Existing host
Android

applications
and

middleware MVP VM
support
services

Virtual phone
Android

applications
and

middleware

MVP Virtual
Machine Monitor

mvpkm

MVP user
interface proxy

Guest Linux
2.6.32 Kernel

Host world Guest/VMM world

pvtcp

mvpd

vmx
(Startup,
storage,

checkpointing)

Remote
management

agent

Telephony
support

vpnd

mksck

Figure 3: MVP system architecture.

Similar to the motivation given by Sugerman et al. [30] for
this organization in VMware’s desktop virtualization prod-
uct Workstation, a hosted hypervisor provides a powerful
approach in addressing the hardware diversity present in the
non-core aspects of mobile device SoCs. MVP leverages the
existing device drivers in the host operating system, map-
ping guest virtual device operations to standard interfaces
exported by the host kernel. Three other key motivations
led to this structure:

• The hosted model is a natural fit for BYOD. A personal
phone with an existing operating system, applications
and settings can be provisioned with an enterprise VM
without perturbing the existing environment. Appli-
cations in the host personal phone are not affected by
the presence of the enterprise VM and do not incur any
virtualization overhead.

• The hypervisor need not interpose on every device
in the system. For example, hardware accelerated
3D graphics necessary for games can be supported in
the home environment without any explicit hypervisor
awareness if not required in the enterprise environment.

• A hosted hypervisor does not have to be integrated
early in the smartphone development cycle and most
components can be provisioned over a mobile network.

MVP relies on the ability of certain trusted components to
obtain elevated capabilities and execute in privileged modes.
A minimal daemon mvpd executes as superuser on the host
and is responsible for granting further MVP-related processes
necessary capabilities. mvpd is the only piece that requires
placement on the device by an OEM. Section 3.4 gives further
details on the integrity checks that mvpd performs and the
chain of trust that enables a verified execution environment
for the VM.

mvpd is responsible for inserting an authenticated kernel mod-
ule mvpkm that supports the transfer of control between the
host kernel and the MVP virtual machine monitor (VMM).
When the enterprise VM is launched, mvpd loads the guest
image and VMM into memory and dedicates a thread to the
execution of the VMM. From the host operating system’s

126

point of view, this thread represents the time spent running
the guest VM.

Once launched, the processor is time multiplexed between
the guest/VMM and host worlds — a world being the user
and system context on the processor, including both user
and privileged register file and coprocessor state. In the
host world, the existing host OS and applications continue to
execute as before. When the guest VM is to be scheduled, the
proxy thread in mvpd calls into mvpkm which then orchestrates
the world switch. Control is transferred to the VMM which in
turn passes control to the guest. The VMM retains ownership
of the exception vector table and page tables, allowing it
to interpose as needed. The VMM returns control to the
host world on interrupts and when necessary to access host
services, for example host memory allocation or to make
some system call on behalf of a virtualized device.

Core virtualization is performed by the VMM and takes
place entirely in the guest/VMM world — there is no need
to world switch on the vast majority of traps related to
instruction set or address space virtualization. The VMM
works in concert with components on the host, such as the
vmx process and pvtcp kernel module to present to the guest
a set of virtual devices. The general model that we have
adopted is to introduce a paravirtualized guest driver for each
device and have the VMM intercept hypercalls for device
specific behavior, forwarding requests as needed to the host
components. Section 3.3 provides further details on how this
applies to some of the key devices supported by MVP.

A custom message passing transport between the worlds,
which we refer to later as mksck, is introduced to the host
kernel by mvpkm and appears to host processes via a standard
sockets abstraction. Support is provided for establishing
secure shared mappings between host processes, the VMM
and the guest.

3.2 Core virtualization
Almost all smartphones today are based on ARM cores,
with a recent trend towards ARMv7, the latest version of
the ARM architecture available in SoCs. Earlier versions
of the ARM architecture featured virtually tagged and/or
indexed data caches, which required careful management at
the application, operating system [34] and hypervisor levels.
ARMv7 has instead a simpler physically addressed data cache
programming model. Given the MVP product time line, and
the availability of ARMv7 support in contemporary mobile
operating systems, it was advantageous to opt to support
only ARMv7 since this led to a reduction in hypervisor
complexity.

We describe below the approaches adopted in the MVP
VMM to two aspects of core virtualization — instruction set
architecture (ISA) and memory. While the lightweight par-
avirtualization (LPV) techniques described below are used in
the production MVP VMM, the modular architecture in Sec-
tion 3.1 enables other VMMs and virtualization techniques
to be employed. VMware has developed internally several
alternative VMM prototypes using binary translation, depriv-
ileged user-mode virtualization [12,29] and hardware assisted
virtualization support. The last of these VMMs is based on
ARM’s upcoming Virtualization Extensions [10] and demon-

strates the potential for eliminating guest paravirtualization
with respect to the core completely.

3.2.1 ARM Instruction Set Architecture (ISA)
ARM is a 32-bit load/store architecture in which data pro-
cessing instructions act only on registers. It provides a user
mode for application execution and several privileged modes
for kernel execution and exception handling, referred to as
system mode, IRQ mode, etc. Low power variants of the ISA
known as Thumb and Thumb-2 feature a subset of the in-
structions with a reduced instruction width and hence higher
density. The architecture facilitates instruction set extension
with coprocessors, used for floating-point instructions, single-
instruction multiple-data (SIMD) processing instructions,
etc.

Similar to other architectures such as x86, ARM has a number
of non-privileged instructions (i.e. instructions that do not
trap when executed from an unprivileged mode) that can po-
tentially access or rely on privileged state. Such instructions
are termed sensitive instructions in ISA virtualization termi-
nology. Because of the presence of such sensitive instructions,
the ARM architecture is not classically virtualizable as per
the original definition proposed by Popek and Goldberg [26].

Two standard ways in which sensitive instructions can be
dealt with are by using paravirtualization of the guest ker-
nel source to replace sensitive instructions statically or by
employing binary translation to catch and handle sensitive
instructions dynamically. We opted for a form of paravirtu-
alization for two reasons:

• Due to the coupling of kernel source code availability
and licensing in the mobile space, paravirtualization
posed no limitation on the guest kernels we could sup-
port.

• We could reduce overall system complexity, opting for
simple guest kernel changes over the complexity of a
complete and optimized binary translator.

Our goal in virtualizing the ISA for the guest virtual machine
was to avoid any changes in the guest user-mode code, i.e. ap-
plications and middleware, and to make minimal changes to
the hardware definition. This implied only those changes to
the guest kernel that were necessary to simplify the monitor
as compared to a VMM based on dynamic binary transla-
tion. The motivating reasons for minimizing changes beyond
reduced complexity were the easing of guest porting to the
MVP virtual platform and maintaining a stable interface
between the guest and VMM.

Towards this goal, we employ the following approach to
virtualize the ISA for the guest kernel:

• We execute the entire guest, both kernel and user code,
in user-mode on the physical processor. We rely on
privileged instruction semantics dictated by the ARM
ISA to automatically trap and handle most privileged
instructions encountered in the guest kernel, e.g. privi-
leged coprocessor access instructions mcr and mrc. The

127

exception to this, where we replace such instructions
with hypercalls, is described in the next section.

• We paravirtualize all devices, so we do not need to
provide replacements for instructions that might access
regions of the address space responsible for I/O as they
do not exist, see Section 3.3.

• Finally, we rely on paravirtualization to handle the sen-
sitive instructions. Most of the instructions in this class
relate either directly or indirectly to state contained in
the Current Processor Status Register (CPSR), which
has many privileged bits of information such as the
current mode of execution, whether interrupts are en-
abled or not, etc. However, it also has some innocuous
bits of information such as the status flags, including
the zero flag, the parity flag, etc. Depending on which
mode of execution the CPSR register is accessed from,
the semantics governing which bits are overwritten and
which bits remain unmodified are different.

More specifically, we employ a variant of paravirtualization
that we call lightweight paravirtualization (LPV). Instead of
making changes to entire subsystems and data structures in
the guest kernel, we limit changes to only the architecture
dependent branch, e.g. arch/arm in the Linux kernel source
tree. Further, we limit changes to surface-level changes
in leaf functions/macros that can be easily made with a
simple search and replace. We replace sensitive instructions
either with hypercalls 1:1 to force a trap (and then emulate
semantics upon trap in the monitor), or with a block of
instructions that emulate the sensitive instruction’s semantics
in-place, a more performant approach in many cases.

3.2.2 Memory
There are two components in the memory subsystem that
require virtualization, the memory management unit (MMU)
and the physical memory resources presented by the SDRAM
on a mobile device.

MMU virtualization encompasses how the processor address
translation and memory protection hardware is virtualized.
The ARMv7 MMU manages a 32-bit virtual address space,
represented in a two-level hardware-walked tree page ta-
ble. Page sizes range from 4KB–16MB and 8-bit ASIDs are
provided. In addition to the page-level read, write and no-
execute permissions, a domain protection mechanism allows
for page-level protection to be overridden at 1MB granular-
ity [5] and modified orthogonally. The architecture supports
multiple levels of TLBs, unified and split. As no dedicated
hardware virtualization support exists today, i.e. no nested
translation, we had the option of modifying the guest via
paravirtualization or providing a virtual MMU faithful to
the original architecture via trap-and-emulate. We opted for
the latter since paravirtualization of page table and memory
management involves making changes to extant guest data
structures and algorithms, with greater complexity than a
simple search and replace of sensitive instructions. Opti-
mizations presented by paravirtualized approaches to MMU
virtualization [7] can still be achieved through a set of op-
tional hypercalls that are added to a guest kernel as needed.
For example, loops of guest cache and TLB maintenance
CP15 instructions are replaced with a single hypercall.

Shadow page tables

Guest state

VMM state Page faults
(VMM guest
page table
walker)

Optional
hypercalls

CP15
register access

traps

Guest page tables

Virtual CP15 registers

ARM processor state

TLB

Core CP15 registers

VMM CP15
register access

Page faults
(H/W page table

walker)

Figure 4: ARM MMU virtualization in MVP.

A MMU provides a virtual address space abstraction, map-
ping virtual addresses to physical addresses. With virtualiza-
tion we introduce an additional level of indirection, with the
guest maintaining as before a page table with guest virtual
to guest physical mappings and the VMM maintaining a
mapping from guest physical addresses to machine physical
addresses. Shadow page tables [2], which cache the derived
guest virtual to machine physical mappings, are maintained
by the MVP VMM and are accessed by the hardware page
table walker. The shadow page table contents are kept coher-
ent with the guest page table and hypervisor physical page
mapping data structure by intercepting traps resulting from
guest page faults and TLB maintenance related Coprocessor
15 (CP15) register accesses. Since the guest executes in user
mode, any attempt to access these privileged registers results
in a trap and shadow copies of these register locations are
maintained when they are stateful. Figure 4 illustrates the
relationship between guest, VMM and processor state. The
above traps are sufficient to faithfully virtualize the ARM
MMU with shadow page tables. A number of further heuris-
tics, caching and prefetch optimizations exist in the MVP
VMM to improve performance and the end result is negligible
MMU virtualization overheads for many workloads.

Machine memory is managed by the host operating system
and allocated to the VMM via mvpkm. Since guest workloads
may be demanding and require a large fraction of the device
memory resources, we overcommit memory between the guest

128

and host, employing a ballooning [33] approach to balance
the available free memory resources and page cache utiliza-
tion. The balloon policy avoids the situation in which either
the guest or host trigger low memory application lifecycle
behavior while there remains free resources in the comple-
mentary world. MVP also supports rapid checkpointing and
restore of VMs, providing an enhanced user experience via
virtual phone persistence and obviating the virtual phone
boot process.

3.3 Platform virtualization
Below we provide an overview of how a selection of smart-
phone components are virtualized in MVP. In the interest
of brevity we focus on components where the smartphone
hardware and software environment influenced the design
choices.

3.3.1 Storage
Both hypervisor components and VM images are stored on
the existing host filesystems. Smartphones typically have
two types of storage devices — internal NAND Flash mem-
ory and Secure Digital (SD) cards. The internal NAND is
fixed and constrained in size due to cost and power consump-
tion. On high-end smartphones this typically ranges from
256–512MB, while SD card storage, also based on NAND
technology, but connected via a SD bus and controller, pro-
vides removable storage that can extend up to 32GB today.
Secure Digital Extended Capacity (SDXC) cards will support
up to 2TB capacities in the future. SD card storage benefits
from the economies of semiconductor scaling and supply after
a smartphone has been shipped and purchased.

When the host system image, applications and data are con-
sidered, the available internal NAND storage is a fraction
of the device capacity. Hypervisor components install on
the internal NAND as with other host applications. Since
VM images are large, containing both a tuned system image,
enterprise applications and data, they lend themselves to SD
card storage. The MVP storage virtualization components
enable higher levels of performance, data integrity and secu-
rity on the virtual device than is available on a standard SD
card filesystem.

Figure 5 shows the various layers in the guest and host
storage stacks. A file read or write by a guest application
will require data to be transferred between guest application
memory and the physical SD card media. Take for example
a write operation on some file. Once the data has been
transferred to the guest kernel and written out from its page
cache, a virtual I/O operation is started by a hypercall from a
paravirtualized device driver. The driver provides a reference
to the monitor which, in turn, provides a shared mapping
to a storage thread in the vmx component on the host (from
Figure 3). The block is written to the VM image file using
a write operation on the host, at which point the host I/O
stack is responsible for transferring it to the physical card.

FAT-based formats are standard for SD cards and the flash
translation layer (FTL) on many cards is optimized for large
sequential file transfers — SD cards are primarily used for
photos, music and video storage and document transfers. We
provide enterprise-level performance, reliability and security
with:

VFS

libc

Guest
Application

ext3

Block
Layer

NAND
Layer

FTL

NAND Chip
Driver

NAND
CHIP

PV Block
Driver

VFS

Host libc

ext3

VMX
(Storage thread,

guest image format
processing,
encryption)

Block
Layer

NAND Flash
Filesystem

VFAT

MMC/SD
Layer

MMC/SD
Driver

microSD
Card

Mksck +
Shared Mem

Physical
Hardware

Virtual
Hardware

Guest Linux
Kernel

Host Linux
Kernel

Guest "unix"
user space

Host "unix"
user space

FTL

NAND

Figure 5: MVP storage architecture.

• A high-performance log structured VM image format
matching the I/O mixture from the guest, containing a
significant amount of small non-sequential operations,
to the I/O characteristics of the SD card. Unlike their
cousins found in solid state disks (SSDs), the low cost
FTLs in consumer grade Flash storage devices dictate
a significant penalty for non-sequential writes [3, 9]. It
is not uncommon to observe two orders of magnitude or
more difference between sequential and non-sequential
write performance for small block sizes.

• A journaling guest filesystem. Barriers issued by the
journaling EXT3 guest filesystem are propagated to the
vmx storage thread, allowing it to take steps necessary
to provide the media coherency guarantees expected
by the guest. MVP bypasses the host page cache and
performs direct I/O, maintaining its own buffers that
are flushed in response to barrier requests. This was
found to be a solution with lower maximum latency
than syncing page cache contents on barriers.

• Block level encryption is used in the guest image format
to mitigate threats posed by SD card removal, phone
theft and malicious applications with access to the SD
card.

• A mostly zero copy stack. With the exception of the
encryption/decryption steps, there is no need for the
CPU to directly process any guest block data between
the guest kernel buffers and SD card controller DMA
engine.

The checkpoint images also reside on SD card storage and
have the same log structured and encrypted storage format
as the guest images.

129

Host kernel Guest kernel

Socket
APIs

Guest user mode applicationsHost user mode applications

Mksck / Shared
memory

Socket
APIs

PV client module

Offload engine

Host network
stack

H
ost

N
IC

driver

Figure 6: MVP networking architecture.

3.3.2 Network
Networking capabilities are provided by a high-level paravir-
tualization framework called paravirtualized TCP (PVTCP).
PVTCP is distinguished from traditional full virtualiza-
tion and paravirtualization techniques by operating at the
socket/system call level as opposed to the device interface
level. Using this approach allows for benefits such as lower
virtualization overhead and more flexible deployment options.

The architecture of PVTCP is broadly split into two parts,
a PV client module that runs in the guest VM kernel con-
text, and an offload engine that runs in the host kernel
context, implemented in the pvtcp module in Figure 3. In
the PV client, all network services requested by guest user-
mode applications are intercepted at runtime just before
the transport level. These requests are then proxied off to
the offload engine via the mksck high-speed shared-memory
communication channel.

For example, when a guest VM attempts to perform a socket
system call to open a socket, a request is made directly to
the offload engine. The offload engine performs a socket

call on behalf of the PV client, creating a proxy socket
for the guest. The net effect is that a guest application
attempting to execute protocol-level services will delegate
protocol-processing and driver-level processing to the offload
engine.

By interposing in the guest directly at the protocol level
instead of at the device level, we avoid the necessity of
traversing two network stacks (one for the guest and one for
the host) as well as the complexity of software emulation of a
hardware network interface. In fact, because all socket calls
are delegated to the offload engine, the guest VM does not
need to have a virtual NIC at all. This architecture allows
for better CPU utilization and lower virtualization overhead.
In internal testing, we have achieved throughput-parity with
the host on many workloads and significantly lower CPU-
utilization as opposed to a traditional fully emulated NIC
approach.

All PVTCP traffic is tunneled through the vpnd component
in the host as per the security model described in Section
3.4.

3.3.3 Telephony
It is impossible to discuss a smartphone environment without
referencing the telephony components involved. For MVP,
our vision is to provide isolation of personal and work en-
vironments, supporting two distinct phone numbers. MVP
supports a number of approaches to realizing multiple phone
numbers on a single device, with the ability to provide a spe-
cific option dependent on some subset of the device manufac-
turer, Subscriber Identity Module (SIM) card manufacturer,
carrier network as well as enterprise network connectivity
and integrated solutions. We review some of the possible
approaches below and note that the actual product will sup-
port one or more of these based on market requirements and
capabilities.

• GSM. Within the GSM space there are number of
viable options. In some geographies devices capable of
supporting two SIM cards are sold, although these are
generally not smartphones in nature. Alternatively, a
single SIM card is capable of supporting multiple lines
which makes the form factor more familiar and inte-
grated with lower device design changes. One approach
is to provide multiple International Mobile Subscriber
Identities (IMSIs) on a single SIM card, which allows
the mobile device to appear to the network as multiple
devices from a capability and billing perspective. These
solutions are also sold and supported in diverse geogra-
phies. A separate approach is the alternate line service
(ALS) provision in an extension to the GSM specifica-
tion [1], which has been activated in some networks,
although this appears to be limited in deployment and
in some cases decreasing.

• Network. From a network perspective it is possible
to offer a call-forwarding solution where numbers ter-
minate at a PBX (e.g. an Asterisk server [6]) and are
then forwarded via a third invisible line to the device
with some meta-data indicating which of the original
personal or work numbers were the target of the in-
coming call. Outgoing calls can be similarly tagged to
indicate the originating number. Examples of this type
of solution are common, e.g. Line 2 [23].

• Voice-over-IP (VoIP). VoIP continues to be an in-
teresting and somewhat controversial addition to the
telephony options available on smartphones. As carri-
ers begin to embrace and offer VoIP-based services, the
evolution to 4G/LTE will further enhance the ability
of networks to support this as a viable option. Within
the MVP domain, there are two interesting approaches;
firstly connecting to public domain providers like Skype
or Fring. The second option which is particularly in-
teresting in the enterprise space is the integration of
Unified Communications (UC) [13] technologies and
their continued penetration in the corporate data cen-
ter. By merging UC and MVP, enterprises have a
compelling end user experience while retaining control
over policies, auditing, adding IT-controlled capabilities
etc. The end-user can benefit with features like inte-
grated dialing, easy access to instant messaging (IM)
and presence tools as well as access to corporate assets
like address books and accurate person availability.

130

3.4 Security
Below we summarize the key security threats and goals
expressed by enterprises, mobile security researchers and
OEMs, followed by details of the MVP approach to securing
the platform.

Enterprise security goals include protecting sensitive informa-
tion on the mobile device, data exchanges between the device
and the corporate intranet and access to data or services
within the corporate intranet. As discussed in Section 2,
an additional goal is to counter the physical threat model
posed by devices that may be lost or stolen. To achieve
these goals today requires that corporate IT policy place
inconvenient restrictions on the installation of applications,
password configurations and device lockout.

A significant threat concerning the security community [8,
14, 15] and OEMs is posed by the untrusted downloadable
applications that may exist in the host environment. Such
applications may have information flows beyond those an-
ticipated by the user and/or may be actively malicious, e.g.
Trojans, spyware and other malware. On the Android plat-
form, the end user is prompted when an application is in-
stalled to confirm the permissions granted to access devices
such as the GPS, SD card and various OS services. It is
common for applications to request permissions that are not
obviously connected with the application’s function and end
users may not have the required technical understanding to
effectively arbitrate, e.g. it may be difficult to understand
why a game requires access to the address book, network
and GPS location, and whether this request is reasonable.
This confusion can lead to Trojans bypassing the manual
permission checks. According to a recent report [31], 20%
of applications in the Android market request permissions
to access private or sensitive information and 5% have the
ability to place a call with no user check. Another illustrative
example of a malicious host application is the introduction
of a proxy application linking an adversarial external host
and a corporate intranet [11].

MVP secures corporate resources accessible by employee
owned devices by creating two separate environments. The
host environment is open and the device owner can continue
to use it without restriction. The enterprise environment is
managed by corporate IT, which decides exactly what kind
of application can be installed in this environment and which
policies must be applied. In addition:

• Irrespective of the permissions given to applications
in the personal environment, they cannot cross the
virtualization barrier, which prohibits host applications
gaining access to the network, address book, SMS,
phone dialing and other data/resources in the enterprise
VM.

• All network traffic from the enterprise VPN is tunneled
through a VPN to a corporate VPN gateway via a
daemon vpnd, shown in Figure 7. Applications in the
enterprise VM transparently benefit from the VPN
access. The host kernel tun device and pvtcp share a
namespace isolated from the normal network namespace
on the host (a feature available in the Linux kernel
since version 2.6.24). This prevents untrusted host

Host Linux 2.6.29+ Kernel

Existing host
Android

applications
and

middleware

Virtual phone
Android

applications
and

middleware

MVP Virtual
Machine Monitor

Guest Linux
2.6.32 Kernel

Host world Guest/VMM world

vmx
(Startup,
storage,

checkpointing) vpnd

SD card filesystem

Encrypted guest
images,

checkpoint files

Internet

Corporate VPN gateway

Network path

Storage path

Figure 7: MVP storage and networking paths.

Android applications from gaining VPN access, ruling
out the possibility of a malicious application bridging
an external host to the VPN.

• There are only very limited access controls on the SD
card in Android. All files are accessible from any ap-
plication with SD card permission. The card is also
removable by anyone with physical access to the device.
As described in Section 3.3.1, the MVP solution imple-
ments a block level encryption of the guest’s virtual file
system and checkpoint images to mitigate these risks.
Thus, all applications in the enterprise VM benefit from
storage encryption and are protected from prying host
applications and SD card removal. This is illustrated
in Figure 7.

• A password is required to start the enterprise VM and
depending on corporate policy, to switch from personal
to work environment, either each time, or when the
work VM has been inactive for some period of time.

From an architecture point of view, the MVP solution has
been split into different components, implementing a privilege
separation pattern.

When performing privileged operations on the host, the
root of trust is always the mvpd process. It is installed in
a read-only filesystem by the OEMs, effectively enabling
virtualization on the phone. In conjunction with Android’s
signing and permission model [28], mvpd authenticates the
other trusted and, transitively, the untrusted components.
The trusted components are kept simple and small. The
other virtualization components on the host, which are used

131

SoC secure
boot

Host system
image

mvpd Guest VM
image

VMM

mvpkm

pvtcp

Other MVP
components

vmx

vpnd

Figure 8: MVP chain of trust. Arrows indicate that
the source authenticates the destination node.

to implement device virtualization or platform management,
run with user privileges. For example, the applications re-
sponsible for the host side of display or audio virtualization
don’t need to be run as the superuser. In the guest/VMM
world, only the VMM component executes in a privileged
mode.

At boot time, a chain of trust is created, preventing image
tampering, as shown in Figure 8. The phone boot code
authenticates the phone system image. mvpd is authenticated
as part of this system image. Before starting the work
VM, vmx authenticates the other virtualization components
installed on the platform, as well as the VM system or
checkpoint image.

3.5 Performance methodology
MVP’s BYOD use case focused our performance efforts on
end-user experience with no hard real-time constraints. Our
goal was that the performance of an application in the virtual
phone should be indistinguishable by a human user from
the performance of that application running on the native,
unvirtualized device. Our approach to track progress toward
this goal involves continuous benchmarking with workloads
that include, among others:

• Web browsing: a scripted test that measures the time
to start a browser, load a page with several images,
and scroll down that page.

• Bootup: starting an Android-based virtual machine to
stress storage, the Android JVM and process creation.

• Multimedia kernels: predominantly unprivileged,
easy-to-virtualize computation that serves mostly as a
practical sanity check that virtualization imposes little
overhead with such programs.

• OS and I/O microbenchmarks: used by subsystem
developers to isolate and improve a particular aspect
of the system.

While we strove to avoid virtualization overhead in all work-
loads, it was a guiding philosophy that we would tolerate
even substantial overheads if they could be shown to have no
effect on an interactive user’s experience and battery lifetime.

To a first order, battery life is proportional to execution time
and the active cycles of the display and modem hardware.
Hence, a system with low virtualization performance over-
head can be expected to have low energy overhead, providing
that host device management is unaffected by the presence

of a hypervisor. However, special care must be taken to allow
the phone to take advantage of any low-power states provided
by its hardware. To this end, certain polling-based subsys-
tems have been replaced with on-demand implementations.
We study power consumption of an idle MVP system using
a battery simulator and proxies such as host OS-reported
scheduler wake-ups per second.

We describe below the performance measurement and anal-
ysis methodology for the VMM and host components of
the system, together with an overview of how we manage
performance regressions.

3.5.1 VMM
Our primary tool for diagnosing and correcting performance
problems is an internal tool called kstats. This tool was
originally developed for the VMware x86 VMM to provide
lightweight, flat execution profiles of VMM services. Call
chains involving the VMM do not employ a traditional stack:
while the VMM code makes function calls to VMM routines,
the VMM is preemptible and may be entered or exited via
exceptions and world switches. This program flow makes
function-level profiling difficult. Furthermore, a function
(like HandleInterrupt) may be called on behalf of various
services (emulating a device, servicing a page fault, etc...),
and the key to improving performance may have more to do
with reducing the number of times such a service is required
than speeding up a leaf function it invokes. The trade-off
for achieving such service-oriented profiling is that kstats
requires developers to annotate the VMM code. As the
annotations are simple, the manual effort is an acceptable
tradeoff given the importance of VMM performance.

An example of a kstats profile is shown in Figure 9. The
profile is an example of a workload dominated by easy-to-
virtualize unprivileged code with little I/O. The name of
the service appears at the left. The next column shows the
percentage of total execution time attributed to each service.
The Average Cycles column is merely the quotient of Total
Cycles divided by Counts. The Overhead column is an esti-
mate of virtualization overhead computed with the formula:
Total Cycles/(de.User + de.Priv). We assume that the
workload running without virtualization would require ap-
proximately the number of cycles spent in direct execution.
Thus, the ratio of a VMM service’s cycles to the estimate
of native execution cycles represents the overhead caused by
that service. Note that the overheads need not sum to 1.

Looking at both the Overhead and Percent column gives
developers two views of the same profile: a view sorted by
Overhead shows the most expensive services while one sorted
by Percent puts these services in the context of the entire
execution. One might be drawn to optimize a service with a
large overhead, but this may be a low-priority task if that
service does not contribute much to the overall slowdown.
Alternatively, a service may not currently be the largest
component by percent of total time, but if it has a high
overhead, its effect may become more pronounced as the
impact of other services is reduced.

In addition to a text-based cumulative profile, it can be useful
to visualize the profile of a workload over time. An interactive,
graphical tool has been developed for this purpose, and a

132

--
Name % Total Counts Average Ovrhd

Cycles Cycles
--
de.User (Direct Execution of guest user mode code) 91.759% 8809370286 2076 4243434 -
host (Host time: vmx and non-MVP processes) 3.749% 359887170 5474 65744 0.04
de.Priv (Direct Execution of guest privileged code) 1.438% 138087476 2077 66484 -
irq (Handling interrupt) 0.465% 44663350 2266 19710 0.00
swi.PrivToUser (Guest mode switch) 0.412% 39565001 2076 19058 0.00
...

Figure 9: The first few lines of a kstats profile of an unprivileged multimedia workload

Figure 10: Time series view of a kstats profile. The
legend has been truncated for brevity.

screen shot is shown in Figure 10. Such a view allows the
user to restrict analysis to the steady state behavior or a
particular program phase. The kstats tool suite includes
other visualizations that enable MVP engineers to focus
optimizations.

3.5.2 Host
kstats only provides fine grained information about time
spent in the VMM. The rest of execution consists of direct
execution of the guest or execution in the host world. Host
world time appears in a kstats profile, but the asynchronous
nature of the host MVP components and batching of tasks
that they perform for the VMM make it difficult to interpret
the information; it is included mostly as a placeholder. To un-
derstand how time is spent on the host, we use oprofile [24].
oprofile compatibility is achieved via careful transitions at
each world switch. When execution transitions from the host
to the VMM, the MVP world switch code saves the values of
the performance counters and their status registers. Prior to
resuming execution on the host, the values are restored, giv-
ing the appearance that no time has elapsed and no counter
has overflowed due to VMM or guest execution.

3.5.3 ARM Performance Monitoring Hardware
We also take advantage of the multiple hardware performance
counters available on our platform. These can be useful for
precise timing of a code routine (e.g., by performing that
routine in a tight loop surrounded by reads of the cycle
counter). We have measured cache and TLB miss events to
determine whether code that shows up as a kstats hotspot
would benefit from improving the data layout or reducing
the code footprint.

3.5.4 Regressions
In addition to low-level profiling to reveal and correct par-
ticular problems, the MVP team runs continuous tests of
performance to track progress and catch regressions. The
results of this testing are recorded in a database and plotted
on a website that provides links to the associated log files,
profiles and changesets. When the continuous integration
system or an interactive user detects a result that is signif-
icantly different from the baseline in the database, we can
consult the associated artifacts to determine if the change is
due to inherent variability or the corresponding code change.

4. VIRTUALIZING ANDROID — MVP IN

ACTION
Figure 11 provides a flavor of the user experience when inter-
acting with the dual personal/enterprise phone environments
provided by MVP. The screenshots were obtained from a
Nexus One smartphone with both Android 2.1 guest and host.
Even though the underlying mobile OS in both environments
is similar in this example, there is distinct isolation provided,
both at the system level as discussed in earlier sections and
through the user interface (UI).

The home screen of the personal phone is shown in Figure
11(a). Various outside-of-work applications are installed,
such as Facebook, GMail and a podcast aggregator. Also, an
icon exists in the top right corner for the enterprise VM. The
VMmay be running in the background or checkpointed. Once
this icon is tapped, the UI switches to that of the enterprise
VM, as seen in Figure 11(b). Different, IT provisioned,
applications are installed and the Android instance has an
alternative theme. The browser in Figure 11(c) connects via
the corporate VPN to the network. By selecting the “Home”
icon in Figure 11(d), the user can switch control back to the
personal phone environment.

Further demonstrations of MVP are available at:
http://www.vmware.com/mobile.

5. RELATED WORK
In this paper we describe the architecture of a hosted hy-
pervisor for mobile devices based on the ARM architecture,
aimed at supporting an enterprise BYOD model. Similarities
exist in the system structure with VMware’s Workstation
hosted architecture for x86 PCs, described by Sugerman et
al. [30], however there are significant differences in the host
world componetization, influenced by the mobile network
provisioning model for the hypervisor.

133

(a) Personal phone home. (b) Enterprise VM home. (c) Browsing inside VM. (d) Return to personal phone

Figure 11: MVP personal/enterprise phone screenshots.

Early commercial use cases for mobile virtualization were
typically oriented around the concerns of silicon vendors, for
example consolidating application and baseband processors
or providing GPL isolation [35]. Type 1, or bare-metal,
hypervisor architectures [20] were common, offering real-time
advantages [32]. The BYOD enterprise use case we address
with MVP invokes a different set of requirements, described
in Section 2, making an alternative approach to hypervisor
structure and provisioning compelling.

To the best of our knowledge, all previous approaches to
system virtualization on the ARMv4–7 architectures have
entailed some form of core paravirtualization, for example
Xen on ARM [21]. MVP employs a distinct shallow par-
avirtualization approach described in Section 3.2, requiring
only the identification and replacement of sensitive instruc-
tions. At the application level, Sehr et al. [27] describe
techniques for sandboxing on ARM via rule constraints on
binaries and static validation, allowing for the co-existence
of trusted and untrusted components in the same address
space. Application performance measurement by dynamic
binary translation on ARM is described by Hazelwood and
Klauser [19]. VMware has also developed a dynamic binary
translation based research VMM for the ARM ISA that elimi-
nates the need for any paravirtualization. The close coupling
of licensing and source code availability in the mobile do-
main allows for an overall system complexity reduction by
lightweight paravirtualization.

6. SUMMARY
In this paper we’ve presented the underlying motivation for
smartphone virtualization, the BYOD use case, and provided
a tour of the MVP hypervisor’s design goals and system
structure, including the security model and performance
methodology employed. We believe that the technical archi-
tecture underpinning the MVP hypervisor provides a robust,
secure and performant approach to provisioning a device

with both personal and enterprise managed environments,
while providing a portable solution to OEMs with low time-
to-market.

With MVP we feel that we can adequately address the grow-
ing market need to support employee-owned smartphones
in the modern enterprise. Finding the right balance of IT-
driven control, end-user experience, performance, security
and scalability is a constant struggle in this environment and
with MVP we can meet these challenges across all compo-
nents of the solution. We look forward to working with our
partners across the various industries to bring the product to
market and are excited by the possibilities it provides here
and in adjacent and orthogonal markets.

Acknowledgments. In addition to the paper authors, there
are many MVP team members who have contributed pro-
foundly to the design and implementation of the hypervisor
and our overall product solution. We are indebted to Scott
Devine, Larry Rudolph and Julia Austin for providing the
conception and founding vision for MVP, together with the
hosted MVP structure.

7. REFERENCES
[1] 3GPP, Orange PCS Ltd, Mercury One-2-One. Common

PCN Handset Specification, 2000. Version 4.2.

[2] Adams, K., and Agesen, O. A comparison of software and
hardware techniques for x86 virtualization. In ASPLOS-XII:
Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems (New York, NY, USA, 2006), ACM,
pp. 2–13.

[3] Agrawal, N., Prabhakaran, V., Wobber, T., Davis,
J. D., Manasse, M., and Panigrahy, R. Design tradeoffs
for SSD performance. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference (Berkeley, CA,
USA, 2008), USENIX Association, pp. 57–70.

134

[4] Apple Inc. Apple’s App Store downloads top three billion.
http:
//www.apple.com/pr/library/2010/01/05appstore.html,
Jan. 2010.

[5] ARM Limited. ARM Architecture Reference Manual:
ARMv7-A and ARMv7-R edition, 2007. ARM DDI 0406A.

[6] Asterisk — the open source telephony projects.
http://www.asterisk.org.

[7] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
Xen and the art of virtualization. In SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems
principles (New York, NY, USA, 2003), ACM, pp. 164–177.

[8] Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V.,
and Iftode, L. Rootkits on smart phones: Attacks,
implications and opportunities. In HotMobile’10:
Proceedings of the 11th Workshop on Mobile Computing
Systems and Applications (Annapolis, Maryland, USA,
February 2010), ACM Press, New York, NY, USA,
pp. 49–54. http://doi.acm.org/10.1145/1734583.1734596.

[9] Birrell, A., Isard, M., Thacker, C., and Wobber, T. A
design for high-performance flash disks. SIGOPS Oper. Syst.
Rev. 41, 2 (2007), 88–93.

[10] Brash, D. Extensions to the ARMv7-A architecture. In Hot
Chips 22 (Stanford University, California, Aug. 2010).

[11] D’Aguanno, J. Blackjacking — 0wning the enterprise via
the Blackberry. In Defcon 14 (Las Vegas, NV, August 2006).

[12] Dike, J. A user-mode port of the Linux kernel. In ALS’00:
Proceedings of the 4th annual Linux Showcase & Conference
(Atlanta, Georgia, 2000), USENIX Association.

[13] Elliot, B., and Blood, S. Magic quadrant for Unified
Communications. Gartner RAS Core Research Note,
G00201349 (2010).

[14] Enck, W., Gilbert, P., gon Chun, B., Cox, L. P., Jung,
J., McDaniel, P., and Sheth, A. N. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (Oct.
2010).

[15] Enck, W., Ongtang, M., and McDaniel, P. On
lightweight mobile phone application certification. In CCS
’09: Proceedings of the 16th ACM conference on Computer
and communications security (New York, NY, USA, 2009),
ACM, pp. 235–245.

[16] Forrester Research, Inc. Collaboration needs will fuel a
smartphone surge, Jan. 2010.

[17] Gartner, Inc. Gartner says Android to become no. 2
worldwide mobile operating system in 2010 and challenge
Symbian for no. 1 position by 2014.
http://www.gartner.com/it/page.jsp?id=1434613, Sept.
2010.

[18] Google Inc. Android dev guide: What is android?
http://developer.android.com/guide/basics/
what-is-android.html.

[19] Hazelwood, K., and Klauser, A. A dynamic binary
instrumentation engine for the ARM architecture. In CASES
’06: Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded systems
(New York, NY, USA, 2006), ACM, pp. 261–270.

[20] Heiser, G., and Leslie, B. The OKL4 Microvisor:
Convergence point of microkernels and hypervisors. In
Proceedings of the 1st Asia-Pacific Workshop on Systems
(New Delhi, India, Aug 2010).

[21] Hwang, J., Suh, S., Heo, S., Park, C., Ryu, J., Park, S.,
and Kim, C. Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones. In
Proceedings of the 5th Annual IEEE Consumer
Communications and Networking Conference (Las Vegas,
NV, Jan. 2008), pp. 257–261.

[22] Kaneshige, T. 7 steps to stronger enterprise iPhone security.
CIO Magazine (Aug. 2010).

[23] Line 2. http://www.line2.com.

[24] OProfile. http://oprofile.sourceforge.net.
[25] PDAdb.net. http://pdadb.net.

[26] Popek, G. J., and Goldberg, R. P. Formal requirements
for virtualizable third generation architectures. In SOSP ’73:
Proceedings of the fourth ACM symposium on Operating
system principles (New York, NY, USA, October 1973),
vol. 7, ACM Press.

[27] Sehr, D., Muth, R., Biffle, C. L., Khimenko, V., Pasko,
E., Yee, B., Schimpf, K., and Chen, B. Adapting software
fault isolation to contemporary CPU architectures. In
Proceedings of the 19th USENIX Security Symposium
(2010), pp. 1–11.

[28] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y.,
Dolev, S., and Glezer, C. Google Android: A
comprehensive security assessment. IEEE Security and
Privacy 8 (2010), 35–44.

[29] Steinberg, U. Fiasco μ-kernel user-mode port. TU Dresden,
Dec. 2002.

[30] Sugerman, J., Venkitachalam, G., and Lim, B.-H.
Virtualizing I/O devices on VMware Workstation’s hosted
virtual machine monitor. In Proceedings of the General
Track: 2002 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association, pp. 1–14.

[31] Vennon, T., and Stroop, D. Threat analysis of the
Android Market. Tech. rep., SMboile Systems, 2010.

[32] Mobile handset design: Realizing flexible, low cost, higher
security, device management using OpenOS and real-time
virtualizationTM. Tech. Rep. TR-06-102.1, VirtualLogix Inc.,
2006.

[33] Waldspurger, C. Memory resource management in
VMware ESX Server. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation
(December 2002).

[34] Wiggins, A., Tuch, H., Uhlig, V., and Heiser, G.
Implementation of fast address-space switching and TLB
sharing on the StrongARM processor. In Proceedings of the
8th Asia-Pacific Computer Systems Architecture Conference
(Aizu-Wakamatsu City, Japan, Sep 2003), Springer Verlag.

[35] Zoppis, B. Using a hypervisor to reconcile GPL and
proprietary embedded code. LinuxDevices. com (Aug. 2007).

135

